Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ya-Hui Zhao, Zhong-Min Su,* Yong Wang, Xiang-Rong Hao and Kui-Zhan Shao

Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

Correspondence e-mail: zmsu@nenu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.029 wR factor = 0.069 Data-to-parameter ratio = 18.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis[2-(2-oxidophenyl)-1*H*-benzimidazole- $\kappa^2 N^3$,O]zinc(II) dimethylformamide disolvate

In the title compound, $[Zn(C_{13}H_9N_2O)_2] \cdot 2C_3H_7NO$, the Zn^{II} ion is located on a twofold axis and chelated by two 2-(2-hydroxyphenyl)benzimidazole ligands with a distorted tetrahedral geometry.

Received 24 June 2006 Accepted 23 July 2006

Comment

2-(2-Hydroxyphenyl)benzimidazole (Hbzim) complexes have shown potential applications in the fabrication of organic electroluminescent devices. Several complexes incorporating Hbzim have been reported previously (Tong & Li, 2004; Tong *et al.*, 2005; Bu *et al.*, 2005; Xi *et al.*, 2005). Recently, we prepared the new title complex, (I), with the Hbzim ligand, and determined its crystal structure.

The molecular structure of (I) is shown in Fig. 1. The Zn^{II} ion is located on a twofold axis and is chelated by two planar, deprotonated 2-(2-hydroxyphenyl)benzimidazole ligands in a distorted tetrahedral coordination geometry. The dihedral angle between the two ligand planes is 80.0 (2)°. The bond angles at Zn1 range from 94.48 (5) to 125.70 (7)°, indicating considerable distortion from a normal tetrahedron (Table 1).

The solvent dimethylformamide (DMF) molecules link with the complex *via* $N-H\cdots O$ hydrogen bonding (Fig. 1 and Table 2).

Experimental

2-(2-Hydroxyphenyl)benzimidazole was synthesized according to the procedure reported by Addison & Burke (1981). An ethanol solution (15 ml) of zinc acetate dihydrate (0.11 g, 0.5 mmol), 2-(2-hydroxyphenyl)benzimidazole (0.21 g, 1 mmol) and sodium hydroxide (0.04 g, 1 mmol) was refluxed for 2 h. The resulting white precipitate was filtered off, dried and then dissolved in DMF. Colorless single crystals of (I) were obtained after one month.

© 2006 International Union of Crystallography All rights reserved

metal-organic papers

Crystal data

 $[Zn(C_{13}H_9N_2O)_2] \cdot 2C_3H_7NO M_r = 630.01$ Orthorhombic, *Pbcn* a = 15.4137 (11) Å b = 8.7799 (6) Å c = 22.0554 (15) Å V = 2984.8 (4) Å³

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.762, T_{\max} = 0.838$

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.029$	$w = 1/[\sigma^2(F_o^2) + (0.0281P)^2]$
$wR(F^2) = 0.069$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} = 0.001$
3562 reflections	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
197 parameters	$\Delta \rho_{\rm min} = -0.45 \ {\rm e} \ {\rm \AA}^{-3}$

Z = 4

 $D_x = 1.402 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

 $\mu = 0.87 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.048$ $\theta_{\rm max} = 28.3^{\circ}$

Block, colorless

 $0.33 \times 0.23 \times 0.21 \text{ mm}$

17219 measured reflections

3562 independent reflections

2229 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Zn1-O1	1.9171 (11)	Zn1-N1	1.9721 (12)	
$01 - Zn1 - O1^{i}$	125.70 (7)	O1-Zn1-N1	94.48 (5)	
$01 - Zn1 - N1^{i}$	111.15 (5)	$N1^{i}-Zn1-N1$	122.52 (7)	

Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.

Table 2

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2-H2N\cdots O2$	0.86	1.94	2.7729 (18)	162

Methyl H atoms were placed in calculated positions, with C–H = 0.96 Å, and torsion angles were refined to fit the electron density, with $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm C})$. Other H atoms were placed in calculated positions, with C–H = 0.93 Å and N–H = 0.86 Å, and refined in riding mode, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C},{\rm N})$.

Figure 1

The molecular structure of (I) shown with 50% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (i) -x, y, $-z + \frac{1}{2}$]. The dashed line indicates the hydrogen bond.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1990); software used to prepare material for publication: *SHELXTL-Plus*.

The authors thank the National Natural Science Foundation of China for financial support (Nos. 20373009 and 20573016).

References

Addison, A. W. & Burke, P. J. (1981). J. Heterocycl. Chem. 18, 803-805.

Bu, H.-Y., Liu, Y.-J., Liu, Q.-F. & Jia, J.-F. (2005). Acta Cryst. E61, m1986– m1987.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

- Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Tong, Y.-P. & Li, W. (2004). Acta Cryst. E60, o1563-o1565.

Tong, Y.-P., Zheng, S.-L. & Chen, X.-M. (2005). Eur. J. Inorg. Chem. 3734– 3741.

Xi, Y., Li, J. & Zhang, F. (2005). Acta Cryst. E61, m1953-m1954.