Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ya-Hui Zhao, Zhong-Min Su,* Yong Wang, Xiang-Rong Hao and Kui-Zhan Shao

Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

Correspondence e-mail: zmsu@nenu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.029$
$w R$ factor $=0.069$
Data-to-parameter ratio $=18.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis[2-(2-oxidophenyl)-1H-benzimidazole$\kappa^{2} N^{3}$,O]zinc(II) dimethylformamide disolvate

In the title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, the $\mathrm{Zn}^{\text {II }}$ ion is located on a twofold axis and chelated by two 2-(2hydroxyphenyl)benzimidazole ligands with a distorted tetrahedral geometry.

Comment

2-(2-Hydroxyphenyl)benzimidazole (Hbzim) complexes have shown potential applications in the fabrication of organic electroluminescent devices. Several complexes incorporating Hbzim have been reported previously (Tong \& Li, 2004; Tong et al., 2005; Bu et al., 2005; Xi et al., 2005). Recently, we prepared the new title complex, (I), with the Hbzim ligand, and determined its crystal structure.

(I)

The molecular structure of (I) is shown in Fig. 1. The $\mathrm{Zn}^{\mathrm{II}}$ ion is located on a twofold axis and is chelated by two planar, deprotonated 2-(2-hydroxyphenyl)benzimidazole ligands in a distorted tetrahedral coordination geometry. The dihedral angle between the two ligand planes is $80.0(2)^{\circ}$. The bond angles at Zn 1 range from 94.48 (5) to $125.70(7)^{\circ}$, indicating considerable distortion from a normal tetrahedron (Table 1).

The solvent dimethylformamide (DMF) molecules link with the complex via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (Fig. 1 and Table 2).

Experimental

2-(2-Hydroxyphenyl)benzimidazole was synthesized according to the procedure reported by Addison \& Burke (1981). An ethanol solution $(15 \mathrm{ml})$ of zinc acetate dihydrate $(0.11 \mathrm{~g}, 0.5 \mathrm{mmol})$, 2-(2-hydroxyphenyl)benzimidazole ($0.21 \mathrm{~g}, 1 \mathrm{mmol}$) and sodium hydroxide ($0.04 \mathrm{~g}, 1 \mathrm{mmol}$) was refluxed for 2 h . The resulting white precipitate was filtered off, dried and then dissolved in DMF. Colorless single crystals of (I) were obtained after one month.

metal-organic papers

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$	$Z=4$
$M_{r}=630.01$	$D_{x}=1.402 \mathrm{Mg} \mathrm{m}^{-3}$
Orthorhombic, Pbcn	Mo $K \alpha$ radiation
$a=15.4137(11) \AA$	$\mu=0.87 \mathrm{~mm}^{-1}$
$b=8.7799(6) \AA$	$T=293(2) \mathrm{K}$
$c=22.0554(15) \AA$	Block, colorless
$V=2984.8(4) \AA^{3}$	$0.33 \times 0.23 \times 0.21 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.762, T_{\text {max }}=0.838$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.069$
$S=1.00$
3562 reflections
197 parameters
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0281 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.45 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{O} 1$	$1.9171(11)$	$\mathrm{Zn} 1-\mathrm{N} 1$	$1.9721(12)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 1^{\mathrm{i}}$	$125.70(7)$	$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1$	94.48 (5)
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1^{\mathrm{i}}$	$111.15(5)$	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 1$	$122.52(7)$

Symmetry code: (i) $-x, y,-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 N \cdots \mathrm{O} 2$	0.86	1.94	$2.7729(18)$	162

Methyl H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$, and torsion angles were refined to fit the electron density, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and refined in riding mode, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Figure 1
The molecular structure of (I) shown with 50% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (i) $-x, y$, $\left.-z+\frac{1}{2}\right]$. The dashed line indicates the hydrogen bond.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXTLPlus.

The authors thank the National Natural Science Foundation of China for financial support (Nos. 20373009 and 20573016).

References

Addison, A. W. \& Burke, P. J. (1981). J. Heterocycl. Chem. 18, 803-805.
Bu, H.-Y., Liu, Y.-J., Liu, Q.-F. \& Jia, J.-F. (2005). Acta Cryst. E61, m1986m1987.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tong, Y.-P. \& Li, W. (2004). Acta Cryst. E60, o1563-o1565.
Tong, Y.-P., Zheng, S.-L. \& Chen, X.-M. (2005). Eur. J. Inorg. Chem. 37343741.

Xi, Y., Li, J. \& Zhang, F. (2005). Acta Cryst. E61, m1953-m1954.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

